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1 Introduction

Forecasting stock returns is a challenging task. Welch and Goyal (2008) showed that a
large number of variables suggested in the literature fail to predict the equity premium
in an out-of-sample setting. Using the same set of variables, however, Rapach, Strauss,
and Zhou (2010) arrived at a positive assessment of predictability: Combining individual
forecasts from predictors studied by Welch and Goyal (2008) generates out-of-sample
forecasts that are more accurate than the historical average benchmark forecast.

In the present paper, we evaluate whether combining forecasts still helps to predict
the equity premium. Such a review is timely. As shown by Goyal, Welch, and Zafirov
(2021), who do not examine combination forecasts, a large number of predictive models
that produced superior out-of-sample forecasts in the original papers did not deliver
in recent years. Apparently, the standard out-of-sample methodology provides little
assurance that predictability will persist. One reason for the instability could be data
snooping. According to Rytchkov and Zhong (2020) and Dichtl et al. (2021), it could
also be relevant for the interpretation of the results in Rapach, Strauss, and Zhou (2010).

In our study, we do not only update combination forecasts in the way they were
implemented by Rapach, Strauss, and Zhou (2010). Motivated by recent contributions
to the predictability literature, we also consider variations of the combination forecast
method as well as alternatives for dealing with a large number of predictors.

As variations, we consider using weighted least squares instead of ordinary least
squares for the individual forecast regressions (Johnson (2018)); iterated combination
forecasts (Lin, Wu, and Zhou (2018)); and the combination of forecasts obtained after
applying an elastic net (Rapach and Zhou (2020)). As alternative statistical procedures,
we consider ridge, LASSO and elastic net regressions (Li and Tsiakas (2017)), principal
components (Rapach and Zhou (2013)), and three-pass regression filters (Kelly and
Pruitt (2015) and Rytchkov and Zhong (2020)).

To alleviate possible concerns that conclusions are based on an update period that
is relatively short compared to the original sample period, we proceed as follows: As in
Rapach, Strauss, and Zhou (2010), we make the first out-of-sample forecast for 1965.
The last forecast is made for the end of 2020. We then split this period into two equal-
sized sub-periods, one from 1965 to 1992 and another more recent one, from 1993 to
2020.

Our results can be summarized as follows: Until the early 1990s, most of the forecast
methods we examine show a forecast quality that is significantly higher than the one
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of the historical mean benchmark. Since then, however, none of the methods shows
significant out-of-sample forecasting gains relative to the historical mean. Results do
not depend on whether we judge forecast gains based on relative predictive accuracy, or
based on utility gains of a mean-variance investor who uses the forecast rather than the
historical mean to determine the optimal equity allocation.

Rapach, Strauss, and Zhou (2010) argue that the ability of combining methods to
predict returns can be rationalized by the observation that combination forecasts are
linked to the real economy. We study whether the strength of these links has changed
and find a decline in the ability of combination forecasts to predict industrial production
growth and real GDP growth. One possible explanation for the decline in the quality of
the equity premium forecasts is therefore that the links to the real economy have faded,
making it more difficult to track fluctuations in the risk premium associated with the
business cycle. Another explanation could be that the forecast gains reported in Rapach,
Strauss, and Zhou (2010) are spurious, consistent with the conclusions of Rytchkov and
Zhong (2020) and Dichtl et al. (2021). Note that a spuriousness of published results
does not require any data snooping activity from the side of Rapach, Strauss, and
Zhou (2010). As shown by Rytchkov and Zhong (2020), using predictors that were
suggested in prior literature leads to data-snooping biases in forecast methods that
aggregate the information contained in these predictors. This does not conclude the list
of possible explanations for the results we find. The predictability in the early years could
have been based on market inefficiencies that later disappeared. Finally, the decline in
predictability that we observe could be transitory.

Judging which explanation contributes the most is very difficult but it is also not
relevant for the main conclusion of our analysis. The key result of Rapach, Strauss,
and Zhou (2010) is that "economic variables collectively are valuable and consistently
outperform the historical average forecast of the equity premium" (p. 823). While this
characterization is correct for the time period from the 1960s to the early 1990s, we
document that it no longer applies to a more recent period of equal length.

Several closely related papers on the robustness of equity premium predictability were
already mentioned. Farmer, Schmidt, and Timmermann (2019) and Harvey et al. (2021)
identify pockets of predictability associated with some of the variables also used in the
combination forecasts. Since they document such pockets also for recent time periods,
their work does not provide direct support to the possible hypothesis that the decline in
the usefulness of combination is transitory. Pastor and Stambaugh (2001) and Lettau
and Van Nieuwerburgh (2008) identify shifts in the equity premium and financial ratios,

2



respectively. Such shifts can make it harder to predict the equity premium, but it is not
obvious that they undermine the usefulness of combination forecasts because combining
can be seen as a way of dealing with structural instability (cf. Hendry and Clements
(2004) and Rapach, Strauss, and Zhou (2010)).

We proceed as follows. In Section 2, we set the stage by describing the different
forecasting strategies. The methodology for evaluating forecasts is sketched in Section
3. Empirical results are presented in Section 4. Section 5 concludes.

2 Forecasting strategies

2.1 The standard predictive model

The workhorse of the literature on equity premium predictability is a linear regression
model:

rt+1 = αi + βixi,t + εt+1, (1)

where rt+1 denotes the equity premium, i.e., the return on a stock market index at
time t+ 1 minus the return on a risk-free asset. Typical candidates for xi,t, a predictor
variable observable at time t, include financial ratios, interest rates, and macroeconomic
variables. Most studies use ordinary least squares (OLS) to estimate the parameters α

and β. In our analysis, we also consider weighted least squares (WLS). For the WLS
regressions, we follow Johnson (2018) by setting weights equal to the inverse of the
conditional variance of equity premia.

This paper focuses on out-of-sample tests of return predictability. In such tests, only
information that would have been available at time t is used to estimate the parameters
of equation (1). An out-of-sample forecast r̂i,t+1 that is made for time t+1 using predictor
i has the following form:

r̂i,t+1 = α̂i,t + β̂i,txi,t, (2)

where α̂i,t and β̂i,t are the coefficient estimates and their time index indicates that
these parameters are estimated recursively, using only information that was available at
time t.
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Extending equation (1) to a multivariate setting is straightforward. A model in which
all predictor candidates are incorporated without applying a model selection process is
usually called a kitchen sink model.

2.2 Forecast combination

Combining methods from Rapach, Strauss, and Zhou (2010)

A combination forecast of the next-period equity premium made at time t is a weighted
average of N individual forecasts:

r̂Ct+1 =
N∑
i=1

ωi,tr̂i,t+1, (3)

where ωi,t is the weight on the forecast generated with variable i at time t, with∑N
i=1 ωi,t = 1. The time subscript of ωi,t indicates that the weights can only be chosen

based on information available at time t. This does not preclude cases in which the
weights are constant.

In our analysis, we implement all averaging rules used in Rapach, Strauss, and
Zhou (2010). The mean combination assigns each individual forecast an equal weight
ωi,t = 1/N in equation (3). The median combination corresponds to the median of
the individual return forecasts. For the trimmed mean combination forecast, we dis-
card the individual forecasts with the largest and smallest return prediction and set
wi,t = 1/(N − 2) for the forecasts that we keep for combining.

These simple averaging rules do not consider the track record of individual forecasts.
A combining method that puts greater weight on better-performing individual forecasts
is the discounted mean squared prediction error (DMSPE) forecast, where the weights of
a given individual forecast depend inversely on its mean squared prediction error. The
weights of the DMSPE forecast are given as1

ωi,t =
ϕ−1
i,t∑N

i=1 ϕ
−1
i,t

, (4)

where

1Note that the DMSPE forecast requires a hold-out period before the out-of-sample evaluation period
to estimate of the combining weights. In the empirical application, we follow Rapach, Strauss, and
Zhou (2010) in setting the length of the initial hold-out period to ten years.
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ϕi,t =
t−1∑
s=m

θt−1−s(rs+1 − r̂i,s+1)
2. (5)

Here, m denotes the last observation before the hold-out out-of-sample period that is
used to calibrate the weights and θ is a discount factor. When θ < 1, forecast accuracy in
the more distant past is discounted relative to recent performance, with smaller values
of θ indicating greater discounting. In addition to the values of 1.0 and 0.9 that are
considered for θ in Rapach, Strauss, and Zhou (2010), we compute the DMSPE forecast
for θ = 0.5 to investigate whether greater discounting can improve predictive accuracy.

The iterated combination method

Lin, Wu, and Zhou (2018) suggest an iterated combination approach in which a sim-
ple combination forecast is additionally combined with the historical average of the
equity premium. The simple combination can for example be based on the mean or
median of the individual forecasts as described in the previous section. The epithet
iterated is a reference to this additional step of applying a further combination to a
combination forecast.

As laid out in Lin, Wu, and Zhou (2018), the theoretically optimal iterated forecast
that minimizes the expected mean squared error is obtained by regressing the forecast
variable on the in-sample combination forecasts and a constant:

rs+1 = η + δr̂Cs+1 + εs+1, (6)

implying that an out-of-sample iterated combination forecast r̂ICt+1 made at time t

takes the following form:

r̂ICt+1 = η̂t + δ̂tr̂
C
t+1. (7)

We construct the iterated mean combination (IterMean), the iterated median combi-
nation (IterMedian) and the iterated trimmed mean combination (IterTrimmed).2

2Lin, Wu, and Zhou (2018) focus on the iterated weighted average (IterWeighted) forecast, where
the weights in the first combination step are determined in proportion to the inverse of estimated
residual variances up to time t. We find that results for the IterWeighted forecast are virtually
indistinguishable from the IterMean forecast in our data sets. Furthermore, note that the IterMean
forecast coincides with the partial least squares (PLS) forecast.
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2.3 Penalized regression approaches

Penalized regression approaches extend the objective function of the linear model given
by equation (1) by adding a penalty term to shrink the predictor coefficients toward
zero. Shrinkage is used to mitigate overfitting and improve the model’s out-of-sample
performance.

Elastic net, LASSO and ridge regression

The elastic net (ENet) estimates of the coefficients (α, β1, ..., βN) are chosen to minimize
the following equation:

t−1∑
s=1

(
rs+1 − α−

N∑
i=1

βixi,s

)2

+ λ

[
1

2
(1− δ)

N∑
i=1

β2
i + δ

N∑
i=1

|βi|

]
, (8)

where λ > 0 is a regularization parameter controlling the extent of shrinkage and
0 ≤ δ ≤ 1 is a parameter that serves to determine the respective weight of the two penalty
terms

∑N
i=1 β

2
i and

∑N
i=1|βi|. The first component is the sum of squared residuals,

implying that the ENet will produce the OLS estimates when λ = 0. For the special
case that δ = 0, the method is called ridge regression, while δ = 1 gives the least absolute
shrinkage and selection operator (LASSO). An important distinction is that the LASSO
forces the coefficients on some predictors to be exactly equal to zero, meaning that it can
be employed as a technique to select variables from a larger group of potential predictors.
For values of δ between 0 and 1, one gets a blend of LASSO and ridge regression that
performs both selection and shrinkage. In the weighted least squares variant that we
consider, we first weight returns and predictors with the inverse of the estimated variance
before applying the penalized estimation routines.

Out-of-sample performance depends on the choice of the regularization parameter
λ. We follow Rapach and Zhou (2020) in choosing λ according to the corrected Akaike
information criterion (AICC) and setting δ = 0.5 in the ENet forecast.

Combination elastic net

Rapach and Zhou (2020) suggest that the mean combining method can be improved
by selecting only the relevant univariate forecasts. For the selection, they estimate the
following regressions via the ENet:
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rs+1 = η +
N∑
i=1

ζir̂i,s+1 + εs+1 (9)

To select forecasts for an out-of-sample study, the regressions are run recursively, over an
expanding hold-out period s = m, ..., t−1, which we initially set to ten years. Following
Rapach and Zhou (2020), we restrict all ζi to be non-negative, which rules out that a
selected univariate forecast is negatively related to the equity premium.

Defining Jt ⊆ {1, ..., N} as the index set of selected univariate forecasts, we obtain
the combination Elastic Net (Comb-ENet) forecast for t+ 1 as

r̂C−ENet
t+1 =


1

|Jt|
∑
i∈Jt

r̂i,t+1 |Jt| ≥ 1

r̄t else,
(10)

where |Jt| is the cardinality of Jt and r̂i,t+1 is a univariate forecast comprised in the
selection.3

2.4 Dimension reduction techniques

Techniques to reduce the dimension of the predictor data set provide an alternative
approach to decrease the number of parameters that have to be estimated and to avoid
an overfitted model.

Principal component regression

Principal component regression involves the estimation of a predictive model where
the first K principal components extracted from a set of N predictors are used as the
regressors, with K ≪ N . The principal components Pk,t serve as input in a standard
predictive regression model:

rt+1 = α +
K∑
k=1

βkPk,t + εt. (11)

Since overfitting becomes a concern as the number of estimated parameters increases,
the literature advises to keep K fairly small (Rapach and Zhou (2013)). We experiment
with two different specifications. First, we implement a sparse model that only makes

3Note that equation (10) differs from the definition given in Rapach and Zhou (2020) as we have to
make allowance for the fact that none of the forecasts might be selected by the ENet.
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use of the first principal component (PrinComp(1)), in accordance with Rapach and
Zhou (2013) or Dichtl et al. (2021). Adopting an alternative specification that is used
in Neely et al. (2014), we carry out an implementation (PrinComp(Opt)) where K is
selected recursively according to the adjusted R2. As in Neely et al. (2014), we restrict
K to a maximum value of three to encourage a parsimonious model.

The three-pass regression filter

Principal component regression ignores any information on how the predictors are related
to the forecasting target (Gu, Kelly, and Xiu (2020)). In contrast, the three-pass regres-
sion filter (3PassFilter) of Kelly and Pruitt (2015) provides a mechanism to directly
connect the dimension reduction with the forecasting objective. Forecasting returns at
time t using the 3PassFilter involves the following steps:

1. Run time series regressions of each lagged predictor xi,s−1 on the realized equity
premia rs and a constant; save the estimated slopes denoted by ϕ̂i,t.

2. For each period in s = 1, ..., t, run cross-sectional regressions of the predictors xi,s

on the previously obtained slope estimates ϕ̂i,t and a constant; save the estimated
slope coefficients F̂s.

3. Run the standard predictive time series regression of equity premia rs on F̂s−1 and
a constant, for s = 2, ..., t to obtain the equity premium forecast for t+ 1.

By default, all regressions are estimated via OLS. We also compute an alternative
forecast where we use WLS in the time series regressions.4

The modified three-pass regression filter

Biases that arise from p-hacking are a major concern in the context of financial fore-
casting. Rytchkov and Zhong (2020) consequently propose a modified version of the
3PassFilter procedure, dubbed 3PassFilterM here, which they argue to be more con-
servative in the face of p-hacking. In the implementation of 3PassFilterM, the original
predictors are replaced with their studentized univariate return forecasts r̂s+1 in steps 1
and 2 of the 3PassFilter.

4In addition, we scale the predictors to have a mean of zero and unit variance. Note that in this
case, the 3PassFilter would coincide with the PLS and thus the IterMean forecast if no constant is
included in the first two regressions.
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2.5 Model restrictions

As suggested by Campbell and Thompson (2008), we examine whether restrictions on
the signs of the regression coefficients and return forecasts help to improve out-of-sample
performance. We proceed as follows: for the combination forecasts, we set the slopes
in the recursive univariate regressions to zero if they do not match expected signs.
The latter are determined with in-sample regressions. We also require the univariate
equity premium forecasts to be non-negative. These adjustments are implemented before
combining.

In the case of the kitchen sink, ENet, LASSO, and ridge forecasts, we estimate all
regressions subject to the coefficient constraints on each predictor. If a forecast turns
out to be negative, we set it to zero. For the iterated combinations and the dimension
reduction methods, we constrain the forecast to be non-negative.

3 The evaluation of forecasts

In this section, we describe the statistical and economical criteria that we use to evaluate
forecast quality.

3.1 Statistical criteria

We compare the performance of the competing forecasts to a benchmark forecast. As
is standard in the literature, this benchmark is the average r̄t of the equity premium
until time t, referred to as the historical average or prevailing mean forecast. Our main
statistical measure is the out-of-sample R2, which is defined as

R2
OS = 1−

∑T−1
t=m(rt+1 − r̂t+1)

2∑T−1
t=m(rt+1 − r̄t)2

, (12)

where m is the first period in which an out-of-sample forecast is made. The R2
OS

statistic can be interpreted as the reduction in the mean squared prediction error (MSPE)
that a forecast r̂t+1 achieves relative to the historical average.

The econometric literature has developed methods for testing whether the reduction
in MSPE achieved by a given predictive model compared to a reference forecast is sta-
tistically significant. For nested models, the MSPE-adjusted statistic proposed by Clark
and West (2007) is routinely employed. One starts by defining
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t̂estt+1 = (rt+1 − r̄t)−
[
(rt+1 − r̂t+1)

2 − (r̄t − r̂t+1)
2
]
. (13)

Next, t̂estt+1 is regressed on a constant and the t-statistic for the constant is used to
obtain a p-value for a one-sided upper tail test with the standard normal distribution.
This corresponds to a test of the null hypothesis that R2

OS ≤ 0 against the alternative
hypothesis that R2

OS > 0.

3.2 Economic criteria

Statistical metrics based on MSPE are the most common criteria to gauge forecast qual-
ity. However, there is no one-to-one relationship between the MSPE and the economic
benefits of using the forecast (cf. Rapach and Zhou (2013)). For this reason, we follow
the literature and also calculate the gains in utility achieved by a mean-variance investor.
We set the relative risk aversion parameter γ equal to three, as in Rapach, Strauss, and
Zhou (2010).

Assume that in each time period, an investor allocates her portfolio between the stock
market and the risk-free Treasury bill. The asset allocation can either be performed
based on the historical average or the alternative model forecast. The investor will allot
the following proportion of her portfolio in period t+ 1 to the stock market:

ωp,t =

(
1

γ

)(
E [rt+1]

E
[
σ2
t+1

]) , (14)

where ωp,t denotes the weight of stocks in the portfolio and the expected value E of
the equity premium in t+1 is either given by the historical average r̄t or the alternative
forecast r̂t+1. As in Rapach, Strauss, and Zhou (2010), we use a ten-year rolling window
to estimate the variance σ2

t+1 of equity premia, and constrain the portfolio weights on
the stock market to be in the interval between 0 and 1.5. This means that short selling
is not allowed and that leverage is limited to a maximum of 50 %.5 Having thus allotted
a share of her portfolio in each time period t, the investor has realized the following
average utility level ν̂p:

ν̂p = µ̂p −
1

2
γσ̂2

p, (15)

5In the asset allocation exercise, we use the simple instead of the log return. In this fashion, the return
on the portfolio in t+ 1 can conveniently be calculated as the product of the portfolio weights and
the stock return, plus the risk-free rate.
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where µ̂p and σ̂2
p are, respectively, the sample mean and variance of the return on a

portfolio constructed either using the historical average or the alternative forecast.
In the literature, there is no widely used convention for dealing with transaction costs.

Rapach, Strauss, and Zhou (2010) do not report utility gains with transactions costs.
Other studies report results assuming proportional transaction costs of 25 basis points
(Dichtl et al. (2021)) or 50 basis points (Li and Tsiakas (2017), Neely et al. (2014)). For
the main results, we will assume proportional transaction costs of 20 basis points (bps).

The utility gain of an investor that uses the alternative instead of the benchmark
forecast is then given as the annualized difference between the respective average utility
levels. The utility gain has a very intuitive economic interpretation as the management
fee that an investor would be willing to pay to have access to the additional information
from the alternative forecast that is not contained in the historical average forecast.

4 Empirical Analysis

4.1 Data

The variable that we forecast is the US equity premium, measured as the difference
between the return on the S&P 500 index (dividends included) and the risk-free return.
The latter is taken to be the interest rate at which Treasury bills with a maturity of
three months are sold on the secondary market. As is common in the literature, we use
continuously compounded returns for the statistical evaluation of forecast errors, and
simple returns for the computation of utility gains.6

For the main analysis, we use the 15 predictors used in Rapach, Strauss, and Zhou
(2010) for the prediction of the quarterly equity premium. For the monthly frequency,
we use the same 14-predictor subset as in Rapach and Zhou (2013). A detailed definition
of the variables is provided in Appendix A.

The data are taken from the 2020 version of the data file maintained by Amit Goyal.
The predictors and these data set are not only used in the seminal paper of Welch and
Goyal (2008) but also in most subsequent predictability studies.

6Rapach, Strauss, and Zhou (2010) state explicitly that they use continuously compounded returns
for the analysis of forecast errors, but do not mention that they use simple returns for the asset
allocation study. Simple returns, however, are not only the theoretically correct input given the
assumed utility function, they are also used for calculating the utility gains of combination forecasts
in Rapach and Zhou (2013).
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4.2 Forecast performance

Quarterly frequency

We first present results for the setup chosen in Rapach, Strauss, and Zhou (2010): The
variable to be forecasted is the quarterly equity premium, the first out-of-sample forecasts
is made in 1964:4 for 1965:1, and the predictor data start in 1947:1, when the last of the
15 used predictors becomes available. As mentioned in previous sessions, other choices
such as the length of the hold-out period for DMSPE combination forecasts, or the risk
aversion and allocation bounds assumed for the asset allocation exercise are chosen as
in Rapach, Strauss, and Zhou (2010). The only difference is that we report the utility
gains after taking proportional transaction costs of 20 basis points into account.

Table 1 shows the summary statistics for the statistical and economic performance
of the forecast methods we study when no Campbell-Thompson restrictions are applied.
We provide results for the entire out-of-sample period from 1965:1 to 2020:4 as well as for
two equally-sized subperiods. Over the entire sample period, the combination methods
studied in Rapach, Strauss, and Zhou (2010), which are indicated by the acronyms
Mean, Median, Trimmed and DMSPE(θ=1) and D(θ=.9) lead to significantly greater
statistical forecast accuracy as well as to positive utility gains. A look at the subperiods,
however, shows that this advantage over the historical mean benchmark is driven by the
first half of the out-of-sample period. From 1993:1 to 2020:4, each combination forecast
studied by Rapach, Strauss, and Zhou (2010) shows a negative out-of-sample R2 and
a negative utility gain. Results do not depend on whether the regressions with which
the individual predictions are generated are estimated with the standard least squares
approach or with a weighted least squares approach as in Johnson (2018).

Variations of the combination approach such as iterated combination forecasts or
combination elastic net forecasts as well as alternative approaches for dimension re-
duction and variable selection show the same pattern. From 1965 to 1992, several of
these forecast methods lead to gains relative to the historical mean. In the second half
of the out-of-sample period, however, none of the methods leads to forecasts that are
significantly more accurate.

For each combination forecast method examined in Table 1, Figure 1 graphs the
differences between the cumulative squared prediction error (CSPE) of the prevailing
mean benchmark and the cumulative squared prediction error of the forecast. Figure 2
does the same for the other forecasts. If the line in a graph is positively sloped in
some period, then a given method delivers more accurate predictions than the historical
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average in that period, while a negative slope indicates that the model was outperformed
by the benchmark. An ideal forecast that always has a lower squared prediction error
than the benchmark would therefore exhibit a consistently positive slope. When a slope
ends above the black horizontal line, the overall CSPE difference is positive and the
model predicted the equity premium more accurately than the benchmark.

With the help of the graphs, one can for example check whether the summary statis-
tics presented in Table 1 for 1993:1 to 2020:4 are representative of the performance in
more recent years, or to which extent they are affected by a few years. Overall, the
graphs suggests that the summary statistics do not mislead about developments in some
parts of that period. From the early 1990s on, the CSPE profiles are mostly negatively
sloped or flat. The most recent years may be of special interest. From 2011 to 2020,
for example, none of the methods shows a marked performance gain relative to the his-
torical mean. Finally, it is interesting to note that none of the combination forecasts
displays a remarkable performance during the financial crisis of 2007-2009 or the Corona
crisis. Apparently, prior findings that predictability is particularly strong during reces-
sions (e.g. Henkel, Martin, and Nardari (2011) and Rapach and Zhou (2013)) do not
apply to more recent years.

Table 2 shows the summary statistics when restrictions on the sign of regression
coefficients and the sign of the equity premium forecast are implemented as suggested
by Campbell and Thompson (2008). Patterns and conclusions do not change. None
of the out-of-sample R2 in the second half of the sample period is significant on a
level of 5%. The highest out-of-sample R2 is achieved by the combination elastic net,
with a significance of 10%. However, the R2 value is quite low compared to the R2

values reported for combination forecasts in Rapach, Strauss, and Zhou (2010), and the
economic gain is just 0.01% per annum.

Monthly frequency

In the recent predictability literature, monthly prediction horizons are more common
than the quarterly horizon employed by Rapach, Strauss, and Zhou (2010). Table 3
therefore shows the forecast performance for the monthly horizon, now again without
Campbell-Thompson restrictions. As one of the predictors used before set is not available
on a quarterly frequency, the number of predictors reduces from 15 to 14. As is evident
from the table, conclusions do not change when we move to the monthly frequency:
None of the forecasts methods leads to gains relative to the benchmark. Unreported
results in which we apply the Campbell-Thompson restrictions show the same patterns.
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4.3 Sensitivity analysis

For the presentation of our main results, we already conducted a lot of variations.
Though our focus is on the methods employed in Rapach, Strauss, and Zhou (2010),
we considered related forecasting approaches as well as the weighted-least squares ap-
proach suggested by Johnson (2018). To further demonstrate the robustness of the
results, we consider the following additional variations:

Extending the estimation sample

For the monthly forecast horizon, we extend the start of the estimation sample to
1926:12, as in Rapach and Zhou (2013). Conclusions do not change. Out of all methods
considered Table 3, the highest R2 we obtain for 1993:01 to 2020:12 is 0.16, significant
at the 10% level and associated with a negative utility gain of −0.41.

Predictor set of Li and Tsiakas (2017)

Several of the predictor variables are highly correlated or even linearly dependent. For
their study of monthly return predictability, Li and Tsiakas (2017), who focus on Ridge,
LASSO and elastic net regressions, exclude the dividend–price ratio, the payout ratio,
and the long-term yield. When we re-do the monthly analysis with this reduced set of
11 predictors, the highest R2 we obtain for 1993:01 to 2020:12 with the regularization
methods studied in Li and Tsiakas (2017) is -3.38, associated with a utility loss of −1.85.

Predictor set of Rapach and Zhou (2020)

Rapach and Zhou (2020) do not only suggest the combination elastic net as a new fore-
casting method, they also use a different predictor set for their empirical analysis. In
comprises nine financial and macroeconomic variables plus three technical indicators.
When we use these variables instead of the 14 variables used in Table 3, the R2 we
obtain for the combination elastic net forecast suggested in Rapach and Zhou (2020)
improves only slightly, from −0.16 to 0.05. The utility gain is still negative (−0.86).

The additional variations considered here therefore do not lead to a change in con-
clusions: Even though we consider a large number of different forecasting methods and
several variations related to data frequency, estimation sample, and predictor sets, we
fail to find significant predictability after 1992.
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4.4 Why has predictive performance declined?

Rapach, Strauss, and Zhou (2010) offer two explanations for the success of combination
forecasts they document in their sample: "(i) combining forecasts incorporates informa-
tion from numerous economic variables while substantially reducing forecast volatility;
(ii) combination forecasts are linked to the real economy." (Rapach, Strauss, and Zhou
(2010), p. 821).

The first-mentioned feature of combination forecasts is still present in the 1993 to 2020
period. As in earlier years, combining is a way of aggregating information from many
variables, and unreported results also confirm that combining shrinks the volatility of
forecasts relative to the volatility of individual forecasts. Rapach and Zhou (2020) discuss
that the benefits of shrinkage can start to decline once it gets too strong. A possible
explanation for the decline in the performance of combination forecasts is therefore that
the shrinkage moved beyond the optimal point. However, the solution that Rapach and
Zhou (2020) offer for tuning shrinkage—the combination elastic net—does not lead to
a clear improvement over the simple combination methods. Without the Campbell-
Thompson restrictions (cf. Table 1), it leads to a smaller accuracy than combination
forecasts studied in Rapach, Strauss, and Zhou (2010); with restrictions (cf. Table 2),
the performance is better but still not significant at a 5% level, with a utility gain of
only 0.01%. Though the shrinkage aspect may play a role in explaining the performance
decline, it is not evident from the literature how this insight could be used to generate
forecasts that are superior to the historical mean benchmark.

To investigate whether the links to the real economy that Rapach, Strauss, and Zhou
(2010) document have changed over time, we study how useful equity premium forecasts
are for the prediction of industrial production and real GDP growth. Industrial produc-
tion data have the benefit of being available on a monthly frequency for a sufficiently
long time period. For the monthly analysis of real GDP growth we estimate monthly
growth rates using cubic interpolation. Data on GDP and industrial production are
obtained from the FRED database.

As in Rapach, Strauss, and Zhou (2010), we use an autoregressive distributed lag
model

yt+1 = ηj + ϕyt + βjxj,t + εt+1. (16)

where yt + 1 denotes the growth rate of real GDP or the industrial production index
from period t to t+1 and xj,t is an out-of-sample combination forecast. We estimate (16)
recursively using ordinary least squares to generate out-of-sample forecasts of the two
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macroeconomic variables. In addition to monthly forecasts, we consider 12-month ahead
forecasts, for which we replace yt+1 with yt+12 = (1/12)(yt+1 + ... + yt+12). Finally, we
determine the out-of-sample R2 of the forecasts based on (16) relative to the historical
means of the real GDP and industrial production growth rates.

Table 4 reports these R2 values for the same periods that we studied previously. The
time pattern in the predictability of industrial production growth is the same as in the
one in the predictability of equity premia: Combination forecasts provide a superior
accuracy from 1965 to 1992 but fail to deliver in the later period from 1993 to 2020.
Forecasts of real GDP growth rates also show the tendency to provide smaller gains
relative to the benchmark, even though some of the combination forecasts continue to
contribute to significant forecast gains in the second half of the period.

We conclude that the weaker link between equity premium forecasts and the real econ-
omy is consistent with the declining gains from using these forecasts for equity premium
prediction. Though the relationship is not necessarily causal, the finding indicates that
there could be a fundamental change in the information content of combination forecasts.

5 Conclusion

In the present paper, we reappraise the ability of combination forecasts to predict the US
equity premium in out-of-sample tests over the period from 1965 to 2020. For the first
half of this period, we confirm the finding of Rapach, Strauss, and Zhou (2010): From
1965 to 1992, combination forecasts predict the equity premium significantly better than
the historical average benchmark. For the more recent time period, from 1993 to 2020,
however, combination forecasts do not provide benefits relative to the historical average.
Modifying combination forecasts in ways suggested in other studies or using alternative
approaches for dimension reduction and variable selection do not change the conclusion.

We also show that the lower quality of combination forecasts is accompanied by
a weakening of their ability to predict the real economy. In addition, the degree of
shrinkage may play a role for the success of combination forecasts. It is not obvious
how these observations can lead to a revival of combination forecasts. The combination
elastic net forecast that Rapach and Zhou (2020) offer as a solution to the problem
of determining a suitable degree of shrinkage also fails to significantly outperform the
historical mean from 1993 to 2020.

Given that the empirical performance of combination forecasts changed fairly quickly
in the past, it may again improve in the future. However, there is also a plausible reason
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why predictive power could remain low: As shown by Rytchkov and Zhong (2020),
collective data snooping by the academic community can introduce a data-snooping bias
in combination forecasts. If their good performance in the 1965 to 1992 was spurious, it
would not be surprising if combination forecasts failed to deliver in the future.

Though it is interesting to consider different explanations and scenarios for the per-
formance of predictive models, it is not obvious how this can help investors and others
choose a better forecast model. Consistent with this view, the literature on equity
premium forecasts focuses on studying their empirical performance, rather than on pon-
dering possible explanations for preferring one model over the other.

Looking at the data available to them, Rapach, Strauss, and Zhou (2010) concluded
that combination forecasts help to predict the equity premium. Looking at the data
that are available today and that we analyzed in the present paper, the conclusion that
researchers or investors reach may well be different.
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A Description of variables

The following 15 variables constitute the predictor set for the quarterly prediction hori-
zon. For monthly predictions, we consider only the first 14 variables. The expected signs
used in applying the Campbell-Thompson restrictions are given in parentheses.

⋄ Log dividend-price ratio (dp): the difference between the log of a 12-month mov-
ing sum of dividends paid on the S&P 500 index, and the log of stock prices as
measured by the S&P 500. (+)

⋄ Log dividend yield (dy): the difference between the log of a 12-month moving sum
of dividends paid on the S&P 500 index, and the log of the lagged S&P 500 price
index. (+)

⋄ Log price-earnings ratio (ep): the difference between the log of a 12-month moving
sum of earnings on the S&P 500, and the log of the S&P 500. (+)

⋄ Log dividend-payout ratio (de): the log of a 12-month moving sum of dividends
minus the log of a 12-month moving sum of earnings. (+)

⋄ Stock variance (svar): the sum of squared daily returns on the S&P 500. (+)

⋄ Book-to-market ratio (bm): the ratio of book value to market value for the Dow
Jones Industrial Average (DJIA). (+)

⋄ Net equity expansion (ntis): a 12-month moving sum of net equity issues by stocks
listed on the New York Stock Exchange (NYSE) divided by the total end-of-year
market capitalization of NYSE stocks. (−)

⋄ Treasury bill rate (tbl): the interest rate on a three-month Treasury bill in the
secondary market. (−)

⋄ Long-term yield (lty): the yield on long-term government bonds. (−)

⋄ Long-term return (ltr): the rate of return on long-term government bonds. (+)

⋄ Term spread (tms): the long-term yield minus the Treasury bill rate. (+)

⋄ Default yield spread (dfy): the difference between BAA- and AAA-rated corporate
bond yields. (+)

⋄ Default return spread (dfr): the return on long-term corporate bonds minus the
return on long-term government bonds. (+)

18



⋄ Inflation (infl): the growth in the Consumer Price Index (CPI, all urban con-
sumers). Inflation is lagged by an additional period to account for the fact that
CPI data is only released in the following quarter. (−)

⋄ Investment-to-capital ratio: Ratio of aggregate (private nonresidential fixed) in-
vestment to aggregate capital.(+)

The data for the construction of the equity premium and the predictors are taken
from the website of Amit Goyal.7 For a more detailed description of the variables, we
refer to Welch and Goyal (2008).

7The data are available from http://www.hec.unil.ch/agoyal/.
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Table 4: How well do combination forecasts of the equity premium predict macroeco-
nomic growth rates?

One-month predictions 12-month predictions

1965-
2020

1965-
1992

1993-
2020

1965-
2020

1965-
1992

1993-
2020

Panel A: Prediction of industrial production growth
Mean 3.85∗∗∗ 7.10∗∗∗ 2.09∗ 7.72∗∗∗ 14.30∗∗∗ 0.44
Median 1.84∗∗∗ 6.40∗∗∗ −0.63 2.27∗∗ 4.14∗∗ 0.17
Trimmed 2.76∗∗∗ 7.01∗∗∗ 0.46∗ 5.58∗∗ 11.24∗∗ −0.72
IterMean 7.81∗∗∗ 2.08∗∗∗ 10.91 −7.62∗∗∗ 1.33∗∗∗−13.30
IterMedian −1.75∗∗∗ 7.50∗∗∗ −6.76 5.63∗∗∗ 14.94∗∗ −3.66∗

IterTrimmed 3.11∗∗∗ 7.28∗∗∗ 0.85 −5.81∗∗ 4.25∗∗∗−14.23
DMSPE(θ=1) 1.60∗∗ 3.42∗∗∗ 0.61 1.43 7.35∗ −5.37
DMSPE(θ=.9) 1.67∗∗ 3.47∗∗∗ 0.69 4.57∗∗ 9.50∗∗ −1.07
DMSPE(θ=.5) 1.70∗∗ 3.55∗∗∗ 0.70 3.06∗ 4.55∗ 1.35
Comb-ENet 5.69∗∗∗ 7.37∗∗∗ 4.78∗ 15.86∗∗∗ 28.18∗∗∗ 2.50∗

Panel B: Prediction of real GDP growth
Mean 10.16∗∗∗ 15.17∗∗∗ 7.74∗∗∗ 10.04∗∗∗ 16.98∗∗∗ 1.37∗∗

Median 5.64∗∗∗ 10.42∗∗∗ 3.33∗∗∗ 3.21∗∗∗ 5.83∗∗∗ 0.19
Trimmed 7.95∗∗∗ 14.53∗∗∗ 4.77∗∗∗ 8.12∗∗∗ 13.29∗∗∗ 1.59∗

IterMean 22.89∗∗∗ 26.12∗∗∗ 21.33∗∗∗ −2.05∗∗∗ 1.41∗∗∗ −0.86∗∗

IterMedian 13.88∗∗∗ 26.96∗∗∗ 7.56∗∗∗ −7.41∗∗∗−13.03∗∗∗ 5.81∗∗

IterTrimmed 15.66∗∗∗ 25.64∗∗∗ 10.84∗∗∗ 3.51∗∗∗ 6.70∗∗∗ 2.83∗∗

DMSPE(θ=1) 9.53∗∗∗ 15.08∗∗∗ 6.85∗∗∗ 10.11∗∗∗ 17.06∗∗∗ 1.41∗∗

DMSPE(θ=.9) 9.07∗∗∗ 13.41∗∗∗ 6.97∗∗∗ 10.54∗∗∗ 16.29∗∗∗ 3.56∗∗

DMSPE(θ=.5) 9.91∗∗∗ 14.48∗∗∗ 7.70∗∗∗ 10.25∗∗∗ 15.19∗∗∗ 4.22∗∗

Comb-ENet 14.33∗∗∗ 22.07∗∗∗ 10.60∗∗∗ 13.55∗∗∗ 25.19∗∗∗ −0.91

Notes: The table reports results for out-of-sample forecasts of US industrial production (IP)
growth and US real GDP growth. Forecasts are made with an autoregressive distributed lag
model that includes a combination forecast of the equity premium as a predictor. In-sample
estimation begins in 1947:01. R2

OS denotes the reduction in mean squared prediction error
(MSPE) achieved by a forecast based on a method in column (1) relative to the historical
average forecast over the respective time period. Statistical significance of the R2

OS statistic
is assessed using the Clark and West (2007) MSPE-adjusted statistic that corresponds to
a one-sided test of the null hypothesis that the MSPE of the historical average benchmark
forecast is less than or equal to the competing forecast MSPE against the alternative that the
historical average MSPE is greater than the competing forecast MSPE. ∗,∗∗, and ∗∗∗ indicate
significance at the 10 %, 5 % and 1 % levels, respectively. For h = 12, we use Newey and
West (1987) standard errors with lag 12.
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Figure 1: Cumulative squared error (CSPE) differences for quarterly combination fore-
casts of the equity premium (no Campbell-Thompson restriction)

Notes: This figure depicts differences in cumulative squared prediction errors (CSPE) for quarterly US equity premium
forecasts based on various combining methods over the out-of-sample period of 1965:1-2020:4. The estimation period
begins in 1947:1. The black (red) lines in each panel delineate the cumulative squared prediction error of the historical
average forecast minus the cumulative squared prediction error of the combination forecast where the individual predictive
regression models were estimated using OLS (WLS). Recessions as defined by the National Bureau of Economic Research
(NBER) are signalled by vertical grey bars.
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Figure 2: Cumulative squared error (CSPE) differences for alternative quarterly fore-
casts of the equity premium (no Campbell-Thompson restrictions)

Notes: This figure depicts differences in cumulative squared prediction errors (CSPE) for quarterly US equity premium
forecasts based on various methods based on a multiple OLS kitchen sink regression, penalized regression and dimension
reduction over the out-of-sample period of 1965:1-2020:4. The estimation period begins in 1947:1. The black (red) lines
in each panel delineate the cumulative squared prediction error of the historical average forecast minus the cumulative
squared prediction error of the competing forecast where the individual predictive regression models were estimated using
least squares or weighted least squares. Recessions as defined by the National Bureau of Economic Research are signalled
by vertical grey bars. Note the differences in scale for the kitchen sink, ENet, LASSO, Ridge and 3PassFilterM forecasts.
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